
Chapter 4

Statistical Modeling

4.1 PDF Modeling Introduction and Notation

The probability density function (PDF) of a random variable (RV) X is defined by

p(x)
∆

= lim
δ→0

Pr{x− δ/2 < X < x+ δ/2}
δ

.

It is called a density function because it is the ratio of probability mass to differential area (or volume). Note that a
particular value of X is written in lower case x. The PDF p(x) is regarded as a function of the particular value x.
When a different RV is used, for example p(z), the meaning of the function p() changes to that defined for the RV Z.
When necessary, for example in the expression p(T (x)), we use a subscript. For example, when z = T (x), we would
write pz(T (x)) to make it clear that p() is the PDF of RV Z. For multi-dimensional vectors written in bold notation,
for example x ∈ RP , the meaning of the density is extended to a density with respect to a differential volume in the
P -dimensional space.

The simplest way to estimate the probability density of data is by histogram. A histogram is obtained by dividing the
space of the RV into “bins”, then counting the number of occurrences of the training data in each bin. A second step of
smoothing or curve-fitting can be used to avoid the effects of random error. A method of PDF estimation that has become
popular is that of Gaussian mixtures (GM). This can be regarded as the process of curve-fitting to a histogram where the
curve is constrained to be a sum of positive Gaussian-shaped functions (modes or kernels), each with a different mean and
variance. It also has the statistical interpretation of a mixture density - where each sample of the RV is regarded as having
been a member of a sub-class corresponding to each mode. We will devote Section 4.3 to GM PDF estimation.

Multidimensional data, x ∈ RP , can be modeled by a multidimensional GM. However, when data consists of K
samples of dimensionP , it is not necessary or even desirable to group all the data together into a singleK×P -dimensional
sample. In the simplest case, allK samples are independent and we may regard them as samples of the same RV. Normally,
however, they are not independent. The Markovian principle assumes consecutive samples are statistically independent
when conditioned on knowing the samples that preceded it. This leads to an elegant solution, the hidden Markov model
(HMM), which employs a set ofM PDFs of dimension P . The HMM regards each of theK samples as having originated
from one of M possible states and there is a distinct probability that the underlying model “jumps” from one state to
another. We discuss the HMM, which uses GM to model each state PDFs, in section 4.4.

We discuss additional PDF models in the last section.

4.2 When is a PDF estimate good?

4.3 PDF Estimation using Gaussian Mixtures

This section is concerned with the general PDF estimation problem. Let p(z) be the PDF of z which must be estimated
from training samples. If p(z) is continuous, it may be approximated to arbitrary accuracy by any kernel-based estimator
[35], such as the method of Gaussian Mixtures (GM) [36] given enough terms.

1

2 CHAPTER 4. STATISTICAL MODELING

4.3.1 Gaussian Mixtures

The GM form of the PDF for z ∈ RP is given by

p(z) =

L
∑

i=1

αi N (z,µi,Σi) (4.1)

where
N (z,µi,Σi) = (2π)−P/2 |Σi|−1/2 exp

{

−1

2
(z− µi)

′
Σ−1

i (z − µi)

}

.

The L mixture components are called modes. The GM parameters are denoted Λ = {αi, µi, Σi}. The most commonly
used method for finding the maximum likelihood estimate of the parameters from a training set is the E-M algorithm [36],
[37].

4.3.2 Gaussian Mixtures and the E-M Algorithm

The EM algorithm is an effecive way to perform maximum likelihood (ML) estimation when the data PDF can be easily
maximized if a certain set of unknown parameters are known. These “unknown” parameters, or missing data, are the
mode assignments. The mode assignments can be understood if we assume that each data sample from the Gaussian
mixture had been produced by exactly one of the modes. The mode assignment for sample n is denoted kn and k denotes
a particular set of assignments k = {k1, k2 . . . kN}.

Derivation of the EM Algorithm for GM

Let X = {x1,x2 . . .xK} be a collection of data. The Q-function is defined as the expected “complete” log-PDF where the
expectation is carried out over the conditional distribution of the “missing data”, given X, using the current best estimate
of the PDF parameters Λ, and the log-PDF is written in terms of the new values of the parameters to be estimated, Λ′:

Q(Λ,Λ′)
∆

= Ek|X;Λ{log p(X,k; Λ′)} =
∑

k

p(k|X; Λ) log p(X,k; Λ′).

Expanding,
Q(Λ,Λ′) =

∑

k
p(k|X; Λ)

∑

n log p(xn, kn; Λ′)

=
∑

n

∑

k
p(k|X; Λ) log p(xn, kn; Λ′)

=
∑

n

∑

kn

∑

kn̄
p(kn,kn̄|X; Λ) log p(xn, kn; Λ′),

where kn̄ are are the assignments not associated with sample n. The inner summation is a marginalization
∑

kn̄

p(kn,kn̄|X; Λ) = p(kn|X; Λ).

Thus,
Q(Λ,Λ′) =

∑

n

∑

kn
p(kn|X; Λ) log p(xn, kn; Λ′)

=
∑

n

∑

kn
p(kn|xn; Λ) log p(xn, kn; Λ′)

=
∑

n

∑

kn
ωkn,n log p(xn, kn; Λ′),

where the conditional model probabilities ωi,n are defined as

ωi,n
∆

= p(i|xn) =
p(i,xn)

p(xn)
=

p(xn|i) p(i)
∑

j p(xn|j) p(j)
=

N (xn,µi,Σi) αi
∑

j N (xn,µj ,Σj) αj
.

The maximization of Λ′ can be carried out on the quantity

L(Λ′) =
∑

n

∑

i

γn ωi,n log p(xn, i; Λ
′),

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 3

where we have added data weights, γn, which define a probabilistic weights for each data sample. This could be inter-
preted as adjusting the influence of a training sample as though sample n was replicated γn times, or can be thought of as
the probabilistic certainty that sample n is indeed valid. By collecting γn and ωi,n together into a quantity wi,n, we have

L(Λ′) =
∑

n

∑

i

wi,n log p(xn, i; Λ
′), (4.2)

where
wi,n = γn ωi,n.

The algorithm in Table 4.1, maximizes (4.2) over Λ′ at each iteration. While correct, is representative only. Actual
computation requires careful attention to numerical issues which are discussed below.

4.3.3 Implementation Overview

In the sections that follow, we discuss the subtleties associated with practical implementations of the E-M algorithm. We
also discribe a complete MATLAB library for training, evaluating, and visualizing PDF’s of high dimensions. The Gaus-
sian mixture parameters are organized into a structure. The GPARM structure for feature dimension DIM with NMODES
modes has the form shown in Table 4.2. To illustrate the use of the structure in MATLAB, if gparm is the name of the
Gaussian mixture parameters, then the mixing weight of the third mode is accessed as gparm.modes(3).weight .
A vector containing all the weights is created as follows: wts = [gparm.modes.weight]’ , whereupon wts is
a NMODE-by-1 vector of mixing weights. The meaning of each parameter in the structure will be described. The
correspondence between the mathematical symbols and the MATLAB variables are tabulated in Table 4.3. Some of
these symbols are already defined. The rest will be defined later. The E-M algorithm of Table 4.1 is implemented by
subroutine gmix step.m . Training can be accomplished by calling gmix step.m repeatedly. There are, however,
subtleties having to do with how the GM is initialized and how the number of modes is chosen. Modes can be added or
removed during the training process. The subtleties are described in the following sections. In the software, the subroutine
gmix trainscript.m handles the details.

To illustrate the PDF estimation problem, we will use some 3-dimensional features from a mysterious source.
Samples of the feature vector z = {z1, z2, z3} were used as training data and were stored in variable data1 ,
which is of size 3 by K, where K is the number of independent samples. Each row of the matrix stores the samples
of a different feature. The following code segment implements the training and displays the resulting PDF in a density plot.

NMODE=10;
min_std = [20 20 1.0];
names = {’Z1’,’Z2’,’Z3’};

gparm1 = init_gmix(data1,NMODE,names,min_st d);
for i=1:100,

[gparm1,Q] = gmix_step(gparm1,data1);
fprintf(’%d: Total log-likelihood=%g\n’,i,Q);

end;
gmix_view2(gparm1,data1,1,2);

Refer to table 4.3 for symbol names. The variable names is a cell array that stores the feature names for use in visu-
alization plots. The variable min std stores the minimum feature standard deviations (See section 4.3.4). The routine
init gmix.m creates an initial set of parameters. In simple problems, the mixture can be trained by repeated calls
to gmix step.m as shown. In more difficult problems, it is necessary to do more to insure that there are the right
number of modes and that the algorithm is converging properly. A representative MATLAB program for training is
gmix trainscript.m , which in turn calls gmix step.m , the subroutine that actually implements the E-M algo-
rithm. We will discuss the use of gmix trainscript.m in more detail in the following sections. Results of running
the above code segment are shown in Figure 4.1. Visualization is accomplished by gmix view2.m for any desired
2-dimensional plane. A routine gmix view1.m is also available for projecting on one axis using a histogram. We will
describe a complete example in more detail in section 4.3.7.

4 CHAPTER 4. STATISTICAL MODELING

Repeat until convergence:

1. Compute data weights. For i = 1, . . . , L:

wi,k =
αi N (zk, µi,Σi) γk

L
∑

i=1

αi N (zk, µi,Σi)

.

2. For i = 1, . . . , L let:

α
′

i =

N
∑

k=1

wi,k.

3. Update the means. For i = 1, . . . , L:

µi =
1

α′

i

N
∑

k=1

wi,k zk.

4. Update the covariances. For i = 1, . . . , L:

Σi =
1

α′

i

N
∑

k=1

wi,k (zk − µi) (zk − µi)
′

.

5. Condition the covariances. There are two methods for doing this, the BIAS and CONSTRAINT methods. The following is the
BIAS method: For i = 1, . . . , L:

{Σi}n,n = {Σi}n,n + ρ
2

n, n = 1, . . . , P,

where ρn is the assumed measurement standard deviation for the n-th element of feature z. The addition of this a priori
information about the feature serves to prevent the covariance matrices from becoming singular. These constants ρ2

n must be
chosen carefully. The topic will be discussed in detail in section 4.3.4. The CONSTRAINT method is described therein.

6. Update mode weights. For i = 1, . . . , L:

αi =
α′

i
∑N

k=1
γk

.

Table 4.1: Update Equations for Gaussian Mixtures. This is representative only. Actual implementation requires attention
to numerical issues discussed in the text.

|---------------------------------- ------ ----- ----- ------ ----- -|
| structure gparm: |
| ------------------------------------ ----- ----- ------ ----- -|
	structure features(1...DIM):	
	------------------------------------ ----- ------ ----- -	
		name: character string
		----------------------------------- ----- ------ ----- -
		min_std: real number
	----------------------------------- ----- ----- ------ ----- -	
	structure modes(1...NMODES):	
	------------------------------------ ----- ------ ----- -	
		weight: real number
		----------------------------------- ----- ------ ----- -
		mean: DIM-by-1 vector of real numbers
		----------------------------------- ----- ------ ----- -
		cholesky_covar: DIM-by-DIM vector of real numbers
----------------------------------- ------ ----- ----- ------ ----- -

Table 4.2: GPARM structure definition

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 5

Parameter Name Mathematical Symbol or Description
i ∈ [1 . . . L], n ∈ [1 . . . P]

GM Parameters
DIM =length(gparm.features) P

NMODES =length(gparm.modes) Number of GM components, L
gparm.modes(i).weight αi

gparm.modes(i).mean µi

gparm.modes(i).cholesky covar Ri

gparm.features(n).min std ρn

gparm.features(n).name Feature Name
Other Variables

N Number of input samples, N
data Training data, z

data wts Data weights γk

Table 4.3: Table of correspondence between MATLAB variables and mathematical symbols used in the text.

−80 −60 −40 −20 0 20 40 60 80

200

250

300

350

Z1

_
Z

2
_

Z1

_
Z

2
_

−80 −60 −40 −20 0 20 40 60 80

200

250

300

350

−150 −100 −50 0 50 100 150

200

250

300

350

Z1

_
Z

2
_

Z1

_
Z

2
_

−150 −100 −50 0 50 100 150

200

250

300

350

−150 −100 −50 0 50 100 150
150

200

250

300

350

400

Z1

_
Z

2
_

Z1

_
Z

2
_

−150 −100 −50 0 50 100 150
150

200

250

300

350

400

Figure 4.1: Results of PDF estimation for the 3-dimensional feature vector z = {z1, z2, z3}. Data and PDF’s are projected
on the (z1, z2) plane. The three cases are for 12, 100, and 500 training samples. The final number of mixture components
(L) was 1, 6, and 8, respectively. The accuracy improves as the number of training samples increases.

6 CHAPTER 4. STATISTICAL MODELING

Before iterating, a starting point is needed for the GM parameters. This is handled by init gmix.m . This routine
inputs some samples of data vectors z1, . . . , zN , the number of GM terms to use (L), the covariance conditioning param-
eters ρn, and the names of all the features. The GM component means µi are initialized to randomly selected input data
samples. The covariances are initialized to diagonal matrices with large variances. It is important to use variances on the
order of the square of the data volume width |max(z) − min(z)|2. The size of the variances at initialization determines
the data “window” through which each GM component “sees” the data. Too small a window at initialization can lock the
algorithm into the wrong local minimum of the likelihood function. The initial weights αi are set to be all equal.

There are two approaches to determining the number of modes. The first is to sprinkle a large number of modes
throughout the data volume and remove the weak or redundant ones as it converges. The second approach is to start with
just one mode and add modes as needed. The way you determine if a new mode is needed (by splitting an existing mode)
is by a skew or kurtosis measure (kurt.m). These two methods, called top-down and bottom-up, respectively will be
covered in section 4.3.5.

4.3.4 Implementation of the E-M algorithm : gmix step.m

Working in the log domain.

Since probabilities can become extremely small, it is necessary to remain in the log-domain. Staying in the log-domain is
a problem when summations are required. Let li = logN (zk ,µi,Σi). The summation

logS = log

[

L
∑

i=1

αi exp(li)

]

which appears in the first step of the E-M algorithm should be implemented as

logS = M + log

{

L
∑

i=1

αi exp(li −M)

}

,

where M = maxi li.

Using the Cholesky Decomposition of Σi.

Instead of computing Σi directly, we store the Cholesky decomposition of Σi computed using the QR decomposition.
Consider a matrix of column vectors X = [x1,x2, . . . ,xN]. These columns correspond to the vectors (zk − µi) in
Table 4.1. A covariance estimate is obtained by forming the matrix Σ = 1

N XX′, which may be verified is the same as
computing the elements of Σ as follows:

Σij =
1

N

N
∑

k=1

xki xkj .

But note that if you take the QR decomposition X′ = QR, that

Σ =
1

N
XX′ =

1

N
R′Q′QR =

1

N
R′R.

Thus, we see that the QR decomposition of X′ is related to the Cholesky factor of Σ. There is no reason to ever compute
Σ explicitly. Computing Σ requires twice the number of bits of precision as R. A quadratic form can be computed using
R as follows:

z′Σ−1z = ‖y‖2

where
y = z′R−1.

This convention is used in the software (gmix step.m). More precisely, the matrix tmpidx stores X′ where the rows of
X′ are (zk − µi). The QR decomposition of tmpidx is R, which is stored as a parameter. The subroutine for computing
logN (zk ,µi,Σi) is lqr eval.m. This routine inputs z1, . . . , zN , µi, and Ri. The mixture (4.1) is implemented by
subroutine lqr evp.m.

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 7

Choosing the covariance constraints

If the quantization or additive measurement error variance is known for each feature, this can be used as a guide for
choosing the covariance constraints. But, it can somewhat subjective if nothing is known about the data. A good idea of
what to use for ρn may be obtained by observing the data on 2-dimensional projections. You should select ρn consistent
with the width of the smallest visible cluster of data. For example, by looking at the top of Figure 4.3, ρ1 and ρ2 would
be estimated by taking cross-sections of the visible data clusters along the X and Y axes, respectively. In the bottom of
Figure, we see the result of choosing ρn too large (note the width of the small Gaussian mode is larger than the width of
the corresponsing data cluster). It may be necessary to view the data in all possible 2-D projections before a decision can
be made.

Conditioning the Covariances

Conditioning the covariances is accomplished without explicitly computing Σi as well. As mentioned in Table 4.1, step
5, there are two methods, the BIAS and CONSTRAINT methods. The BIAS method is simpler. On the other hand, the
CONSTRAINT method delivers a better PDF estimate because the covariances are not biased and appears to converge
faster. But, it may interfere with the monotonic increasing property of the E-M algorithm, i.e. that the total log-likelihood
always goes up, but this is still an unresolved issue. Both methods are based on the idea of independent measurement
error in the elements of z. Let D be a diagonal covariance matrix with Dn,n = ρ2

n. The two methods differ in how they
regard D. The BIAS method assumes D is an a priori estimate of Σ, while the CONSTRAINT method assumes D is a
measurement error covariance.

The BIAS method is implemented by adding D to the newly formed covariance estimate. But, because we do not
work with Σ directly, it is necessary to implement the conditioning as follows: Let X′ = QR. The upper triangular
matrix R is retained and Q is discarded. Next, we form the matrix as shown below for the case P = 3:

R∗ =

R

· · ·
diag(ρn)

 =

r11 r12 r13
0 r22 r23
0 0 r33
· · ·
ρ1 0 0
0 ρ2 0
0 0 ρ3

It may be verified that R∗′R∗ is the same as Σi with the diagonal adjustments. Next, the QR-decomposition of R∗ is
computed and the upper triangular part is stored.

The CONSTRAINT method assumes that Σ = Σ0 + D where Σ0 is an arbitrary covariance. Let the eigendecompo-
sition of Σ be Σ = VS2V′. Clearly, then

S2 = V′Σ0V + V′DV.

Thus, the diagonal elements of S can be no smaller than the square root of the diagonal elements of V′DV. Note that V
and S may be obtained from the SVD of the Cholesky factor of Σ:

Σ = R′R,

and
USV′ = R.

It is implemented in this way in gmix step.m (tmpvar corresponds to R):

[U,S,V]=svd(tmpvar,0);
S = diag(S);
S = max(S,sqrt(diag(V’ * diag(minvar) * V)));
tmpvar = U * diag(S) * V’;
[q,tmpvar] = qr(tmpvar,0);

where the last two steps re-construct R, then force it to be upper triangular.
Consider the following example. Data was created using a mixture of 2 Gaussians using the code segment below:

8 CHAPTER 4. STATISTICAL MODELING

10
0

10
1

10
2

−1.2

−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85

x 10
4

Iteration Number

Lo
g

Li
ke

lih
oo

d

CONSTRAINT(−−−−−−)

BIAS(−−−o−−−)

Figure 4.2: Convergence performance of the BIAS and CONSTRAINT methods. The CONSTRAINT method is consis-
tently faster and achieves a higher log-likelihood every time.

%
% produce data that is from two Gaussian populations
%
fprintf(’Creating data : ’);
N=4096;
mean1=[2 3]’;
cov1= [2 -1.6; -1.6 2];
mean2=[1.3 1.3]’;
cov2= [.005 0; 0 .005];
x1 = chol(cov1)’ * randn(DIM,N);
x1=x1+repmat(mean1,1,N);
x2 = chol(cov2)’ * randn(DIM,N);
x2=x2+repmat(mean2,1,N);

data1 = [x1 x2];

Next, a GM parameter set was initialized with 2 modes with random starting means. Next, gmix step.m was iterated
50 times using the BIAS and the CONSTRAINT method. This experiment was repeated 9 times. In each trial, the same
starting point was used for both methods. The results are plotted in Figures 4.2 and 4.3. Note that the BIAS method
has covariances that are biased and appear somewhat larger than necessary. In every case, the CONSTRAINT method
converged faster and achieved a higher log-likelihood.

4.3.5 Training

Before training can occur, the GM paremeters must be initialized with a call to init gmix , which was described in
section 4.3.3, where we discussed two approaches to training. The top-down approach and bottom-up approaches are

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 9

−4 −2 0 2 4 6 8

0

5

10

ENGY

T
IM

E

ENGY

T
IM

E

Bias

−4 −2 0 2 4 6 8
−5

0

5

10

−4 −2 0 2 4 6 8

0

5

10

ENGY

T
IM

E

ENGY

T
IM

E

Constraint

−4 −2 0 2 4 6 8
−5

0

5

10

Figure 4.3: Typical results of training using the BIAS (left) and CONSTRAINT (right) methods. Each method used
ρn = 0.5. Note that for the BIAS method, the covariance of the large mode is too fat, but for the CONSTRAINT method
it is correct. For the small mode, the mode size is much smaller than ρn and therefore both methods produce similar
results, as would be expected.

implemented simply by defining either a large number of modes or else just one mode, respectively. The number of
modes is specified by in the arguments of init gmix.m . But, training is more involved than just repeatedly calling
gmix step.m . Training involves five operations that are handled by gmix trainscript.m :

1. E-M algorithm (gmix step.m), sections 4.3.2,4.3.4.

2. Pruning modes (gmix deflate.m), section 4.3.5.

3. Merging modes (gmix merge.m), section 4.3.5.

4. Splitting modes (gmix kurt.m), section 4.3.5.

5. Determining if algorithm has converged, section 4.3.5.

The operations are discussed in the indicated sections. An overall training script (gmix trainscript.m) is discussed
in section 4.3.5. The user has some control over some parameters used in training. In addition to the initial number of
mixture modes, there are five other parameters that affect the training over which the user has some control.

1. The covariance constraints ρn (and selection of BIAS or CONSTRAINT method).

2. The minimum mode weight used in pruning modes.

3. The threshold used to determine if two modes should be merged.

4. The threshold to determine if a mode should be split.

5. The criterion for determining if convergence has occurred.

These parameters correspond directly to the five steps outlined above and are discussed in the indicated sections.

10 CHAPTER 4. STATISTICAL MODELING

Determining the number of modes.

As we have stated, training can start with a large number of modes or just one mode. If the number of modes is too high,
modes will be pruned out as αi falls. If the number of modes is too low, modes will be split by gmix kurt.m . Once the
number of modes settles out and the likelihood stops increasing, convergence is declared.

The maximum number of modes to start with is about N/(4P) where P is the dimension and N is the number
of samples. If all the modes “share” the data equally, that is 4P samples per mode, a bare minimum. It is generally
not problematic if the number of modes is over-specified since covariance estimates are stabilized by the conditioning
discussed in section 4.3.4. And, as long as the amount of training data can support the number of modes chosen, the
approximation is good. The mixing weight of a mode (αi) multiplied by the number of input data samples N determines
how many input data samples are effectively used to estimate the mode parameters. This is a simple measure of the
“value” of each mode. As long as this product is high enough, the mode is estimated accurately. If αi falls too low, the
mode is eliminated or combined with another. With a combination of covariance constraints, pruning, merging, and mode
splitting, a good PDF approximation can be obtained reliably.

E-M algorithm (gmix step.m)

The E-M algorithm is explained in section 4.3.4. The calling syntax for gmix step.m is as follows:

[gparm,Q] = gmix_step(gparm,x, [bias],[data_wts]);

where gparm are the input parameters, x is the normalized input data, bias (optional) is set to 1 for BIAS method and 0
for CONSTRAINT method, and data wts (optional) allows individually weighting input data. On return, Q is the total
log-likelihood.

Pruning (gmix deflate.m)

Pruning is killing weak modes (a mode is another name for one of the L mixture components). A weak mode is found by
testing αi to see if it falls below a threshold. We have mentioned that Nαi is a measure of how many samples are “used”
by mode i. To keep this quantity above kP , we require αi > kP/N . The quantity kP is called SAMPLES PER MODE,
or S P M in the software. A good choice for k is about 4, so S P M = 4*P .

Pruning is handled by gmix deflate.m . This program keeps bumping off the weakest mode and re-normalizing
αi so that

∑

i αi = 1. The calling syntax for gmix deflate.m is

gparm = gmix_deflate(gparm,min_weight_1,m in_we ight_ all)

It is important that very weak modes be obliterated immediately, but it is important not to massacre lots of moderately
weak modes all at once. So, there are two input thresholds. Only one mode per call to gmix deflate.m can be bumped
off if it falls below min weight 1 . But a mode is always bumped off if it falls below min weight all .

Merging Modes (gmix merge.m)

Merging is creating a single mode from two nearly identical ones. The closeness of two modes is determined by
mode dist.m which works as follows. Let there be two PDF’s p1(x) and p2(x). Let there be a collection of points
denoted xi ∈ X1 near the central peak of p1(x) and a collection of points denoted xi ∈ X2 near the central peak of p2(x).
Then we define the closeness metric

d = log

∏

xi∈X1

p2(xi)
∏

xi∈X2

p1(xi)

∏

xi∈X1

p1(xi)
∏

xi∈X2

p2(xi)

.

Notice that this metric is zero when p1(x) = p2(x) and less that zero when p1(x) 6= p2(x). A threshold (usually about
-1 * DIM) is used to determine if the modes are too close. This threshold should increase (become more negative) as the
dimension goes up.

Since p1(x) and p2(x) are just two Gaussian modes, it is easy to know where some good points for X1 and X2 are.
We choose the means (centers) and then go one standard deviation in each direction along all the principal axes. The

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 11

Figure 4.4: The 5 summation points for a 2-dimensional mode. Contour at 2σ.

principal axes are found by SVD decomposition of R (the Cholesky factor of the covariance matrix). This is illustrated
in Figure 4.4 for a Gaussian mode of dimension P = 2. There is a center point and two points per dimension. Therefore
there are 2P + 1 points per mode, and two modes, thus 4P + 2 points.

If two modes are found to be too close, they are merged. Merging is forming a weighted sum of two modes (weighted
by α1, α2). The new mean is thus

µ =
α1µ1 + α2µ2

α1 + α2

(4.3)

The proper way to form a weighted combination of the covariances is not simply a weighed sum of the covariances, which
does not take into account the separation of the means. You need to be more clever. Consider the Cholesky decomposition
of the covariance matrix Σ = R′R. It is possible to consider the rows of

√
P R to be samples of P -dimensional vectors

whose covariance is Σ, where P is the dimension. The sample covariance is, of course 1
P (

√
P)2 R′R = Σ, Now, given

two modes to merge, we regard
√
P R1 and

√
P R2 as two populations to be joined. The sample covariance of the

collection of rows is the desired covariance. But this assigns equal weight to the two populations. To weight them by
their respective weights, we multiply them by

√

α1

α1+α2
and

√

α2

α1+α2
. Before they can be joined, however, they must be

shifted so they are re-referenced to the new central mean. Here is a summary of the method:

1. Let µ be as in (4.3).

2. Let Ri be the Cholesky factor of Σi, i = 1, 2.

3. Let Ci =
√
P Ri, each i.

4. Add the vector µi − µ to each row of Ci, each i.

5. Multiply Ci by
√

αi

α1+α2
, each i.

6. Form

C =

C1

· · ·
C2

7. Then the new covariance is Σ = 1
P C′C, or take the QR-decomposition of C/

√
P as the Cholesky factor of the

new covariance.

The above algorithm is implemented by merge.m . The subroutine that iterates over all the pairs of modes and calls
merge.m and mode dist.m is gmix merge.m . The calling syntax for gmix merge.m is

gparm = gmix_merge(gparm,max_closeness)

A good choice for the max closeness threshold is about -1.0 times P , the PDF dimension.

12 CHAPTER 4. STATISTICAL MODELING

Splitting modes (gmix kurt.m)

In a method proposed by N. Vlassis and A. Likas [38], the number of modes in a Gaussian mixture is determined by
monitoring the weighted kurtosis for each mode. Putting their equation for one-dimensional z in our notation, Vlassis et
al define

κi =

∑N
n=1 wn,i

(

zn−µ
i√

Σi

)4

∑N
n=1 wn,i

− 3

where
wn,i =

N (zn,µi,Σi)
∑N

n=1 N (zn,µi,Σi)

If |κi| is too high for any mode i, they split the mode into two. We modify this for higher dimension and use the skew in
addition to the kurtosis. Extending to higher dimension is done by projecting each data sample zn onto the j-th principal
axis of Σi in turn. Let zj

n,i
∆

= (zn − µi)
′vij where vij is the j-th column of V, obtained from the SVD of Σi (see

discussion in section 4.3.5). Thus, for each j,

1. Let

κi,j =

∑N
n=1 wn,i

(

zj

n,i

si

)4

∑N
n=1 wn,i

− 3

2. Let

ψi,j =

∑N
n=1 wn,i

(

zj

n,i

si

)3

∑N
n=1 wn,i

3. Let
mi,j = |κi,j | + |ψi,j |

where

s2i =

∑N
n=1 wn,i

(

zj
n,i

)2

∑N
n=1 wn,i

Now, if mi,j > τ , for any j, split mode i. Split the mode by creating modes at

µ = µi + vijSi,j

and
µ = µi − vijSi,j

where Si,j is the j-th singular value of Σi. The same covariance Σi is used for each new mode. Of course, the decision
of whether to split or not depends on the mixing proportion αi as well. No splitting occurs if αi is too small.

In the following example, we create data with a gap in it. We begin iterating with a single mode. The kurtosis/skew
algorithm above is able to assign modes until it is finally happy after 8 modes (Figure 4.5). The calling syntax for
gmix kurt.m is

gparm = gmix_kurt(gparm,x,[kurt_thresh],[debug]);

The optional threshold parameter (default=1.0) allows control over splitting. A higher threshold is less likely to split. The
optional debug parameter, if set to 1, will print out kurtosis and skew information.

Convergence

A good way to monitor the algorithm to detect convergence is to maintain a history list of the last few values ofQ. If there
is no improvement in Q for the duration of the history list, terminate the training. Note that because of pruning, etc, it is
possible for Q to go down.

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 13

−150 −100 −50 0 50 100 150 200

150

200

250

300

350

400

Z1

_
Z

2
_

Z1

_
Z

2
_

−150 −100 −50 0 50 100 150 200

150

200

250

300

350

400

−150 −100 −50 0 50 100 150 200

150

200

250

300

350

400

Z1

_
Z

2
_

Z1

_
Z

2
_

−150 −100 −50 0 50 100 150 200

150

200

250

300

350

400

−150 −100 −50 0 50 100 150 200

150

200

250

300

350

400

Z1

_
Z

2
_

Z1

_
Z

2
_

−150 −100 −50 0 50 100 150 200

150

200

250

300

350

400

Figure 4.5: Results of bottom up PDF estimation. One mode (left), two modes (center), and after convergence at 8 modes
(right).

Training script (gmix trainscript.m)

The script gmix trainscript.m may be used with the simple syntax:

gparm=gmix_trainscript(gparm,data,MA XIT);

where gparm is the GM parameter vector, data is the N -by-P input data vector, and MAXIT is the maximum number
of iterations allowed. For added control, additional parameters may be added using the syntax

gparm=gmix_trainscript(gparm,data,MA XIT,S AMPLE S_PER_ MODE, BIAS, ...
max_close, addmodes, kurt_thresh)

The meaning of these parameters are discussed in previous sections.

Training on Huge data sets

If the number of data samples (N) is very large, the training scripts can choke like a chihuahua trying to eat a watermellon
in one gulp. To handle this problem, there are scripts that can chop the watermellon into bite-size chunks and have the
same effect as the whole watermellon. The relevant scripts are gmix accum.m and gmix norm.m . The following
code demonstrates how to use these two routines in place of gmix step.m .

%---------------------------------- ------ ----- -----
% Synopsis: bite-size replacement for
% [gparm,Q] = gmix_step(gparm,xn);
% The following code is equivalent to one call to
% gmix_step. The numerical behavior is identical.
%---------------------------------- ------ ----- -----
%

gparm = init_gmix(.....);

for iteration=1:10,

% initialize accumulators to zero
% at start of each iteration
newmean=[];
newvar=[];

14 CHAPTER 4. STATISTICAL MODELING

atot=zeros(nmode,1);
for i=1:nmode,

newmean{i}=zeros(dim,1);
newvar{i}=zeros(dim,dim);

end;
qtot=0;

% Loop over 1000 bite-size pieces
for i=1 : 1000,

x = ... % get new data matrix
[newmean,newvar,atot,qtot] = ...

gmix_accum(gparm,x,newmean,newvar,ato t,qto t);
end;

% finalize the iteration
gparm = gmix_norm(gparm,newmean,newvar,atot);

end;

4.3.6 Conditional PDFs and Conditional Mean using Gaussian Mixtures

Gaussian mixtures afford a convenient way to generate conditional PDFs and conditional mean estimates.

Conditional Estimation in general

Let the data vector z be composed of two parts x and y:

z =

[

x

y

]

.

We have available training samples of z, however in the future, only y will be available from which we would like to
compute estimates of x. We will shortly see that the GM density facilitates the computation of the conditional mean
or minimum mean square error (MMSE) estimator of x. The conditional mean estimator is the expected value of x

conditioned on y taking a specific (measured) value, i.e.,

x̂ = E(x|y) =

∫

x

x p(x|y) dx

The maximum aposteriori (MAP) estimator is given by

x̂ = max
x

p(x|y).

Both the MAP and MMSE estimators are operations performed on p(x|y). Which estimator is most appropriate depends
on the problem. Suffice it to say that the distribution p(x|y) expresses all the knowledge we have about x after having
measured y.

Estimation using Gaussian Mixtures

The GM representation of the density has the a remarkable property that p(x|y) can be computed in closed form. This is
especially useful in visualization of information. For example, it is useful to show a human operator the distribution of
likely x after y is measured. If desired, the MMSE can be computed in closed form as well. The MAP estimate can also
be computed, but that requires a search over x.

Let the GM approximation to the distribution be given by

p(x,y) =
∑

i
αipi(x,y). (4.4)

By Bayes rule,

p(x|y) =
p(x,y)

p(y)
=

1

p(y)

∑

i
αipi(x,y)

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 15

where p(y) is the marginal distribution of y. We now define pi(y) as the marginal distributions of y given that y is a
member of mode i. These are, of course, Gaussian with means and covariances taken from the y-partitions of the mode i
mean and covariance µi,Σi.

µi =

[

µx,i

µy,i

]

Σi =

[

Σxx,i Σxy,i

Σyx,i Σyy,i

]

Then,
p(x|y) =

1

p(y)

∑

i
αipi(y)

pi(x,y)

pi(y)

=
1

p(y)

∑

i
αipi(y)pi(x|y)

(4.5)

where pi(x|y) is the conditional density for x given y assuming that x and y are from that certain Gaussian sub-class i.
Fortunately, there is a closed-form equation for pi(x|y) [39]. pi(x|y) is Gaussian with mean

Ei(x|y) = µx,i + Σxy,iΣ
−1
yy,i(y − µy,i). (4.6)

and covariance
covi(x|y) = Σxx,i −Σxy,iΣ

−1
yy,iΣyx,i. (4.7)

Note that the conditional distribution is a Gaussian Mixture in its own right, with mode weights modified by pi(y) which
tends to “select” the modes closest to y. To reduce the number of modes in the conditioning process, one could easily
remove those modes with a low value of pi(y) (suggested by R. L. Streit).

This conditional distribution can be used for data visualization or, to easily calculate the conditional mean estimate,
which is a by-product of equations (4.5),(4.6),(4.7):

E(x|y) =

∫

x

p(x|y) x dx

=
1

p(y)

∑

i
αipi(y)

∫

x

pi(x|y) x dx

=
1

p(y)

∑

i
αipi(y)Ei(x|y)

(4.8)

MATLAB implementation

The subroutine gmix condx.m is used to generate the conditional distribution. The syntax is

gparm2 = gmix_condx(gparm,x_idx,y_idx,y)

where gparm is the GM parameter vector for p(z), x idx are the indexes indicating which elements of z constitute x

(they can be any elements), and similarly for y idx .
The subroutine gmix cmean.m uses gmix condx.m to compute the conditional mean of x. The syntax is

xhat = gmix_cmean(gparm,x_idx,y_idx,y)

where all inputs are identical to gmix condx.m . The one exception is that input y can include any number of samples
of y. The dimensions of y are N-by-P where N is the number of samples and P is the dimension of y.

Example of Estimation: Beam Interpolation

Assume that beam intensity values are available from a set of M uniformly spaced (in direction) sonar or radar beams. A
target exists somewhere in the span of the M beams, yet we do not know its center location, nor do we know the width
of the response to the signal (as in a broadband system with frequency-dependent beamwidth). We assume for simplicity
that the amplitude is known, yet in principle, amplitude can be another unknown. Thus, there are two parameters we seek
to estimate: direction d and beamwidth w. This problem normally requires a search in the d, w plane for best match (as in
maximum likelihood). Using GM, we solve the problem without a search, yet achieve performance comparable to ML!

16 CHAPTER 4. STATISTICAL MODELING

-8 -6 -4 -2 0 2 4 6 8

20

25

30

35

40

45

THTA

W
D

T
H

Conditional of d,w given data generated with d=2,w=18

Figure 4.6: Condition distibution of d (THTA) and w (WDTH) given a sample of b computed for d = 2, w = 18 with no
additive noise.

Let the beam pointing directions be d1, . . . , dM . Let the beam intensities b = {b1 . . . bM} be modeled by

bi = A exp

{

−0.346(d− di)
2 4

w2

}

+ ni

where ni is a noise term (we use Gaussian noise in the simulation and CR bound analysis). This is a Gaussian beampattern
with 3 dB width w.

A sample size of 4096 was created using d and w selected from uniform distributions in the ranges [-10,10], [15,50],
respectively. Parameters were A = 50, σ2 = 1, M = 5, {θi} = {−20,−10, 0, 10, 20}. A GM model p(b, d, w) of 12
modes was trained on the data. To illustrate the ability to create conditional distributions, p(d, w|b) was computed for a
sample of b computed for d = 2, w = 18 with no additive noise. The result appears in Figure 4.6. The visual effect of
this figure is to say to the operator that there are no other values of interest except the peak.

It is also possible to condition on d or w. The conditional distribution p(b, w|d) was computed for d = 0 and d = −5.
these plots are shown in Figures 4.7,4.8. Note that the beam output values have distributions symmetric about the value
of d, as expected. Note also the wider spread of values on outer beams due to the variations in w.

Estimates of d, w were obtained using formulas (4.8),(4.6). To determine bias, uncorrupted (no noise) values of b

were created for a range of d for w fixed at 20, and for a range of w for d fixed at 2. These two graphs appear in Figures
4.9,4.10. In each case, the bias error is plotted as a function of the variable parameter. Bias is clearly a function of
the operating point. It is also a function of the number of modes and the convergence point of the GM approximation
algorithm. Random error was determined by choosing a specific value of d, w and running 300 trials with independent
noise added to b. The result of 300 trials is shown below.

True Value Mean Variance CR Bound
d 2 1.9435 .0550 .0493
w 18 18.003 .09756 .0945

Results of 300 trials, A = 50, σ2 = 1, M = 5.

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 17

-10 0 10 20 30 40 50 60
0

0.1

0.2

W
H

Y
1

-10 0 10 20 30 40 50 60
0

0.2

0.4

W
H

Y
2

-10 0 10 20 30 40 50 60
0

0.5

W
H

Y
3

-10 0 10 20 30 40 50 60
0

0.2

0.4

W
H

Y
4

-10 0 10 20 30 40 50 60
0

0.1

0.2

W
H

Y
5

Distr. conditioned on d=0

Figure 4.7: The condition distibution p(b, w|d) marginalized on each dimension of b for d = 0.

-10 0 10 20 30 40 50 60
0

0.1

0.2

W
H

Y
1

-10 0 10 20 30 40 50 60
0

0.2

0.4

W
H

Y
2

-10 0 10 20 30 40 50 60
0

0.2

0.4

W
H

Y
3

-10 0 10 20 30 40 50 60
0

0.2

0.4

W
H

Y
4

-10 0 10 20 30 40 50 60
0

0.1

0.2

W
H

Y
5

Distr. conditioned on d= -5

Figure 4.8: The condition distibution p(b, w|d) marginalized on each dimension of b for d = −5.

18 CHAPTER 4. STATISTICAL MODELING

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

direction d, degrees

bi
as

, d
eg

re
es

Bias of d for fixed w (w=20). 12 modes

Figure 4.9: Plot of d̂− d for noise-free data with w = 20.

15 20 25 30 35 40 45 50
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

width w, degrees

bi
as

, d
eg

re
es

Bias of w for fixed d (d=2). 12 modes

Figure 4.10: Plot of ŵ − w for noise-free data with d = 2.

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 19

The results were in close agreement with the CR bound. Strictly speaking, the CR bound does not apply since the
conditional mean estimator is biased for a fixed d, w (it is unbiased for random d, w conditioned on b), however, the CR
bound is useful for comparison purposes.

CR Bound analysis

The log-PDF of the data b is

ln p(b; d, w) = −1

2
ln(2πσ2) − 1

2σ2

∑M

i=1

[

bi −A exp

{

−0.346(d− di)
2 4

w2

}]2

,

where σ2 is the variance of the additive independent Gaussian noise. The components of the Fisher Information Matrix
(FIM) for PDF parameters φi, φj are given by

Fφi,φj
= −E

(

∂2 ln p(b;φi, φj)

∂φi∂φj

)

Let the FIM be given by

F (d, w) =

[

Fdd Fdw

Fwd Fww

]

.

A standard CR bound analysis [40] produces

Fdd =
A2

σ2

(

0.346
8

w2

)2
∑M

i=1
((d− di) exp(−ωi))

2

Fww =
A2

σ2

(

0.346
8

w3

)2
∑M

i=1

(

(d− di)
2 exp(−ωi)

)2

Fdw = Fwd =
A2

wσ2

(

0.346
8

w2

)2
∑M

i=1

(

(d− di)
2 exp(−ωi)

)2

where ωi = 0.346(d− di)
2 4

w2 . The CR bound matrix is given by C(d, w) = F−1(d, w).

4.3.7 An Example Script for Gaussian Mixtures

Script gmix example.m is designed as a teaching example for use of the software. All the basic functions as well
as some handy utilities are demonstrated. Refer to the program listing for the discussion that follows. After typing >>
gmix example at the MATLAB prompt, you will see the graph of Figure 4.11 and the program will pause. This is a
two-dimensional “point scatter” diagram of the data that we will fit a Gaussian Mixture to. Refer to the program listing to
see how this data is created. Pressing any key initializes the Gaussian Mixture parameters with the following 3 lines:

names={’ENGY’,’TIME’};
min_std = [.1 .1];
NMODE=1;
gparm1=init_gmix(data1,NMODE,names,min _std) ;

The first line assigns names to the two dimensions. We have chosen to call them ”ENGY” and ”TIME”. The next
line assigns the ρn parameters, as discussed in section 4.3.4. The N training data samples are stored in the P × N
variable data1 . The last line creates the parameter structure gparm1 . Since the algorithm starts with just a single mode
(NMODE=1), the approximation is poor (Figure 4.12). Pressing a key again executes the training with a 150-iteration limit:

gparm1=gmix_trainscript(gparm1,data 1,150) ;

The log likelihood (Q) is printed out at each iteration along with the number of modes. Log likelihood would monotoni-
cally increase, if not for the pruning, splitting, and merging operations. Use of the CONSTRAINT method of covariance
conditioning will also affect the monotonicity. It may be verified, however, that calls to gmix step.m with BIAS=1

20 CHAPTER 4. STATISTICAL MODELING

−4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

Feature 1

F
ea

tu
re

 2

Figure 4.11: Samples from a Gaussian mixture.

−6 −4 −2 0 2 4 6 8

−5

0

5

10

ENGY

T
IM

E

ENGY

T
IM

E

−6 −4 −2 0 2 4 6 8

−5

0

5

10

Figure 4.12: The initial Gaussian mixture approximation.

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 21

−6 −4 −2 0 2 4 6 8

−5

0

5

10

ENGY

T
IM

E

ENGY

T
IM

E

−6 −4 −2 0 2 4 6 8

−5

0

5

10

−6 −4 −2 0 2 4 6 8

−5

0

5

10

ENGY

T
IM

E

−6 −4 −2 0 2 4 6 8

−5

0

5

10

ENGY

T
IM

E

Figure 4.13: Gaussian mixture approximation after convergence.

will result in monotonic likelihood increase, with the possible exception of numerical errors at the very end of the con-
vergence process. Whenever mode splitting occurs, the message “Adding a mode ..” is printed. Whenever mode merging
occurs, the message “Merging ...” is printed. Because in this example, we have initialized with just one mode, mode
splitting is more likely that merging, although is is possible that after several modes have been split, they can be re-
merged. This causes a “fight” between gmix kurt.m which tries to split, and gmix merge.m , which tries to merge.
In gmix trainscript.m , it is arranged to allow time between splitting and merging so that the E-M algorithm can
settle out. Otherwise, newly merged modes could be quickly split, or newly split modes could be quickly merged.

Once gmix trainscript.m converges, you should should see the graph on the left of Figure 4.13. These plots
are produced by gmix view2.m . This utility is perhaps the most useful visualization tool for high-dimensional PDF
estimation. It allows the data scatter plot to be compared with the marginalized PDF on any 2-dimensional plane.

Marginalization is a simple matter for Gaussian mixtures. Let z = [z1, z2, z3, z4]. To visualize on the (z2, z4) plane,
for example, we would need to compute

p(z2, z4) =

∫

z1

∫

z3

p(z1, z2, z3, z4)dz1dz3.

Instead of integrating out z1, z3, marginalization requires only stripping out the first and third elements of each mode mean
vector, and the first and third rows and columns of each mode covariance, then computing the resulting Gaussian mixture!
Because we work with the Cholesky decomposition of the mode covariances, it requires stripping out the necessary
columns, then doing a QR decomposition of the result. This stripping operation is performed by gmix strip.m . The
syntax would be:

gparm_out = gmix_strip(gparm_in, [2 4]);

where the second argument indicates that we want to retain the second and fourth dimensions. Using this method,
the marginal distribution of any 2-dimensional plane is easily computed. Stripping is handled automatically by
gmix view2.m .

Press once more and the intensity plot is replaced by a contour plot of the modes (on the right of Figure 4.13. The
contour plot is obtained by the fourth argument to gmix view2.m . The complete syntax of gmix view2.m is

[p,xp,yp]=gmix_view2(gparm1,data1,i dx1,id x2,[d o_ell ip],[M],ipl ot);

where idx1, idx2 are the indexes of the dimensions requested and do ellip is an optional argument that, if equal
to 1 (default=0), produces a contour plot of each mode instead of an image. M is an optional parameter that defines

22 CHAPTER 4. STATISTICAL MODELING

−5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
N

G
Y

−5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
IM

E

Figure 4.14: One dimensional PDF plots; Marginal PDF’s compared to histograms.

the number of resolution cells for each dimension of the plot (default=60). The optional parameter iplot can be set
to zero if only the outputs p,xp,yp are wanted. These outputs provide the output PDF grid that can be plotted by
imagesc(xp,yp,p) . In the example, since the data is 2-dimensional to begin with, there is no dimension reduction
performed by gmix view2.m .

Information about the Gaussian mixture may be printed by calling gmix show.m . This information, which includes
the mode weights, means, and determinants, can be directly compared with Figure 4.13. The true means are (2,3) and
(.5,.5), and the true determinants are 1.44 and 1.0, respectively. Generally, if the algorithm results in just 2 modes, the
parameters agree very closely. The inclusion of a third or fourth mode makes it difficult to see the correspondence. But,
nevertheless, the PDF approximation is good as evidenced by the intensity plot. You can run gmix example.m again
and each time the result will be a little different. But always, the intensity plot and the PDF approximation is excellent.

Press the key once more and Figure 4.14 will be plotted. This figure shows the 1-dimensional marginals for each
dimension displayed along with the histograms. It is the result of calling gmix view1.m . The calling syntax is

[pdf,xp,h,xh]=gmix_view1(gparm,data ,idx,n bins) ;

If called without any output arguments, the plot will automatically be generated. Input idx is an array of indexes for the
dimensions desired. For more than one index, multiple plots are produced. Input “nbins” is the histogram size.

Press a key once more and Figure 4.15. This figure demonstrates the function gmix cond (See Section 4.3.6) which
creates conditional PDFs from the original Gaussian mixture. Rather than using Bayes rule explicitly to compute the
conditional PDF of x given that y = y0,

p(x|y = y0) =
pxy(x, y0)

py(y0)
,

it solves for the Gaussian mixture parameters of p(x|y = y0) in closed form so that you can later evaluate p(x|y = y0) at
any point x, or else examine the parameters of the mixture. The figure shows the PDF evaluated at four values of y0.

Press a key once more and Figure 4.16 is shown. This figure plots the original data again in green and some synthetic
data created by gmix makedata.m in red. This demonstrates a convenient aspect of GM approximation: generating
synthetic data is simple.

Press a key once more and Figure 4.17 appears. We now have two data sets. We will now build a classifier using
Gaussian mixtures. The first step is to train a second parameter set on the second data set. This time, we will use the

4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 23

−5 0 5 10
−4

−2

0

2

4

6

8

Figure 4.15: Conditional PDFs of x given y = y0, at various values of y0: {-1, 1, 3, 6} .

−4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

Feature 1

F
ea

tu
re

 2

Figure 4.16: Original data (green) and synthetic data (red).

24 CHAPTER 4. STATISTICAL MODELING

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

Feature 1

F
ea

tu
re

 2

Figure 4.17: A second data class in yellow. The first data set in magenta.

top-down approach by initializing with 15 mixture modes. This time, there will be alot of merging and purging going on,
but less splitting! Press a key again and the training starts. When complete, you should see Figure 4.18.

To classify, it is necessary to compute the log-likelihood of test data. This is done using lqr evp.m . The name of
the subroutine was not thought up logically, but evolved from (l)og-likelihood (ev)aluation from the (p)arameters, and the
fact that the (QR) decomposition is involved in the covariance estimates! The calling syntax is

loglik = lqr_evp(gparm1,data1,0);

If the third argument was 1, the routine would return a matrix of log-likelihoods where each column is from one of the
mixture modes. The zero forces the modes to be combined with the apropriate weights into the GM approximation. The
ROC curve is shown in Figure 4.19. Refer to the listing for details.

4.4 PDF Estimation using HMMs

The hidden Markov model (HMM) is a powerful statistical model that closely approximates many phenomenon found in
nature, such as human speech. While a very powerful statistical model, a single HMM cannot easily act as a classifier
between a wide variety of signal classes. Instead, it is best to design them specifically for each signal type and feature
type. A versatile HMM software toolbox for MATLAB is also described.

4.4.1 Introduction to HMM’s

The fundamental assumption of an HMM is that the process to be modeled is governed by a finite number of states and that
these states change once per time step in a random but statistically predictable way. To be more precise, let Pr(qt = i)
be the probability that the system transitions into state i at time t. The Markovian assumption says that Pr(qt = i)
depends only on qt−1, the true state at time t − 1. Furthermore, if this distribution does not depend on the absolute
time t, then the state probabilities can be described completely by a fixed state transition matrix A = {aij} where
aij = Pr(qt = j|qt−1 = i). Figure 4.20 illustrates a hidden Markov model (HMM). At each time step (time running
from left to right), the Markov model is in one of the five possible states. According to the Markovian assumption, the

4.4. PDF ESTIMATION USING HMMS 25

−10 −8 −6 −4 −2 0 2 4 6 8

−5

0

5

10

ENGY

T
IM

E

ENGY

T
IM

E

−10 −8 −6 −4 −2 0 2 4 6 8

−5

0

5

10

Figure 4.18: Result of top-down approach: Trained GM approximation of second class.

0 0.2 0.4 0.6
0

0.5

1

Pfa

P
d

ROC curve

Figure 4.19: ROC curve for two-class problem.

26 CHAPTER 4. STATISTICAL MODELING

p14
p42

p22
p25

1

2

3

4

5
sta

tes
States
Hidden

Observer:

p4(z)

z2z1 z3 z4 z5

p2(z) p2(z) p5(z)p1(z)

Figure 4.20: A hidden Markov model (HMM). As the state transitions occur from sample to sample, the observer, cannot
see the states directly. Instead, the observer makes observations whose PDF depends on the state.

probability that the model is in state j at time t is governed only by the transition probability aij , where i is the true state
at time t − 1. The Markov model is “hidden” from view by the observer who can only observe measurements zt whose
PDF is governed by the true state at each time step. The mathematics of the HMM are reviewed in section 4.4.2.

How HMM’s are used.

The Baum-Welch algorithm is an algorithm for estimating the parameters of the HMM from training data. The HMM is
a complete statistical model for the series of measurements z1, z2, . . . , zT and therefore defines the probability density
function p(z1, z2, . . . , zT). Therefore, once the parameters have been determined, it is easy to use the HMM as a classifier.
Furthermore, it is also easy to generate ”typical” measurement sequences. This aspect of the HMM has always fascinated
me since in principle, it would be possible to train an HMM on a specific human speaker, then create totally random
“jibberish” that sounded like the same speaker. I have always wondered if certain politicians are already using such a
device. For further information on HMM’s, the reader is referred to the tutorial by Rabiner [41].

The role of HMM’s in class-specific classifiers

In classifying signals, The hidden Markov model (HMM) has a major advantage but one serious drawback. The advantages
is that complex processes may be modeled using low-dimensional models, thereby allowing the HMM to be trained using
a realizable amount of data. The low dimension is achieved by dividing (segmenting) the data into small time steps from
which low-dimensional measurements are made. Although the total observation space is large (the number of steps times
the dimension of the observations), the dimension of the observations may be kept low.

But the problem with HMM’s is that they need to be carefully tailored for a specific type of random process. Not only
is the segment size chosen specially, but so is the observation space (the feature set). It is difficult for an HMM designed
for speech recognition to operate well for other types of processes except speech. If separate HMM’s are used, the
likelihood values cannot be directly compared in a classifier. The class-specific method solves this problem by allowing
two or more HMM’s to be used as detectors for their respective model class, while solving the problem of comparing the
outputs optimally.

4.4. PDF ESTIMATION USING HMMS 27

4.4.2 The standard HMM

Following the notation of Rabiner [41], there are T observation times. At each time 1 ≤ t ≤ T , there is a discrete state
variable qt which takes one of N values qt ∈ {S1, S2, · · · , SN}. According to the Markovian assumption, the probability
distribution of qt+1 depends only on the value of qt. This is described compactly as a state transition probability matrix
A whose elements aij represent the probability that qt+1 equals j given that qt equals i. The initial state probabilities are
denoted πi, the probability that q1 equals Si.

It is a hidden Markov model because the states qt are hidden from view; we cannot observe them. But, we can observe
the random data Ot which is generated according to a PDF dependent on the state at time t. We denote the PDF of Ot

under state j as bj(Ot).
The complete set of model parameters that define the HMM are

Λ = {πj , aij , bj}
The Baum-Welch algorithm calculates new estimates Λ given an observation sequence O = O1O2 · · ·OT and a previ-
ous estimate of Λ. The algorithm is composed of two parts: the forward/backward procedure, and the reestimation of
parameters.

Using Gaussian Mixtures for bj(O).

It will be convenient to model the PDF’s bj(Ot) as Gaussian mixtures:

bj(O) =

M
∑

m=1

cjm N (O,µjm,Ujm), 1 ≤ j ≤ N

where
N (O,µjm,Ujm) = (2π)−P/2|Ujm|−1/2 exp

{

−1

2
(O − µjm)′U−1

jm(O − µjm)

}

,

and P is the dimension of O. We will refer to these Gaussian mixture parameters collectively as

bj
∆

= {cjm,µjm,Ujm}.

Forward/Backward Procedure

We wish to compute the probability of observation sequence O = O1O2 · · ·OT given the model Λ = {πj , aij , bj}. The
forward procedure for p(O|Λ) is

1. Initialization:
α1(i) = πi bi(O1), 1 ≤ i ≤ N (4.9)

2. Induction:

αt+1(j) =

[

N
∑

i=1

αt(i)aij

]

bj(Ot+1), 1 ≤ t ≤ T − 1

1 ≤ j ≤ N

(4.10)

3. Termination:

p(O|Λ) =

N
∑

i=1

αT (i) (4.11)

The backward procedure is
1. Initialization:

βT (i) = 1 (4.12)

2. Induction:

βt(i) =
N

∑

j=1

aij bj(Ot+1) βt+1(j), t = T − 1, T − 2, · · · , 1

1 ≤ i ≤ N

(4.13)

28 CHAPTER 4. STATISTICAL MODELING

Reestimation of HMM Parameters

The reestimation procedure calculates new estimates of Λ given the observation sequence O = O1O2 · · ·OT . We first
define

ξt(i, j) =
αt(i) aij bj(Ot+1) βt+1(j)

N
∑

i=1

N
∑

j=1

αt(i) aij bj(Ot+1)βt+1(j)

(4.14)

and

γt(i) =

N
∑

j=1

ξt(i, j). (4.15)

The updated state priors are
π̂i = γ1(i). (4.16)

The updated state transition matrix is

âij =

T−1
∑

t=1

ξt(i, j)

T−1
∑

t=1

γt(i)

. (4.17)

Reestimation of Observation PDF’s

In order to update the observation PDF’s, it is necessary to maximize

Qj =
T

∑

t=1

wtj log bj(Ot).

over the PDF bj , where

wt,j =
αt(j) βt(j)

N
∑

i=1

αt(i) βt(i)

. (4.18)

This is a weighted maximum likelihood (ML) procedure since if wtj = cj , the results are the strict ML estimates. The
weights wtj are interpreted as the probability that the Markov chain is in state j at time t.

Reestimation of Gaussian Mixture Parameters

If bj(O) are modeled as Gaussian mixtures (GM), one could simply determine the weighted ML estimates of the GM
parameters. Since only iterative methods are known, this would require iterating to convergence at each step. A more
global approach is possible if the mixture component assignments are regarded as “missing data” [42]. The result is that
the quantity

Qj =
T

∑

t=1

M
∑

m=1

γt(j,m) log bj(Ot) (4.19)

is maximized, where

γt(j,m) = wt,j

cjm N (Ot,µjm,Ujm)
M
∑

k=1

cjk N (Ot,µjk,Ujk)

(4.20)

4.4. PDF ESTIMATION USING HMMS 29

The weights γt(j,m) are interpreted as the probability that the Markov chain is in state j and the observation is from
mixture componentm at time t. The resulting update equations for cjm,µjm, and Ujm are computed as follows:

ĉjm =

T
∑

t=1

γt(j,m)

T
∑

t=1

M
∑

l=1

γt(j, l)

(4.21)

Note the similarity to (4.2). This means that the algorithms designed for Gaussian mixtures are applicable for updating
the state PDFs of the HMM.

µ̂jm =

T
∑

t=1

γt(j,m) Ot

T
∑

t=1

γt(j,m)

(4.22)

Ûjm =

T
∑

t=1

γt(j,m) (Ot − µjm) (Ot − µjm)′

T
∑

t=1

γt(j,m)

(4.23)

Note that the above equations do not treat the problem of constraining the GM covariances. This needs to be addressed
(see section 4.3).

Structured State Transition Matrices

TBD

Multiple Records

It is fairly straight-forward to extend the Baum-Welch algorithm to the case when multiple observation sequences
(“records”) are available. Rather than O1, O2, . . . , OT , we have Or

1 , O
r
2, . . . , O

r
Tr
, r = 1, 2, . . . , R. For each record,

1. Run the forward-backward procedure on Or
1, O

r
2, . . . , O

r
Tr

to produce αr
t (i), βr

t (i),

2. Compute ξr
t (i, j), t = 1, . . . , Tr as in (4.14).

3. Compute γr
t (i) as in (4.15).

Then, we have

π̂i =

R
∑

r=1

γr
1(i) âij =

R
∑

r=1

Tr−1
∑

t=1

ξr
t (i, j)

R
∑

r=1

Tr−1
∑

t=1

γr
t (i)

.

Updating the Gaussian mixture parameters requires defining

wr
t,j =

αr
t (j) β

r
t (j)

N
∑

i=1

αr
t (i) β

r
t (i)

,

30 CHAPTER 4. STATISTICAL MODELING

which leads to γr
t (j, k) through (4.20). We then have

ĉjm =

R
∑

r=1

Tr
∑

t=1

γr
t (j,m)

R
∑

r=1

Tr
∑

t=1

M
∑

l=1

γr
t (j, l)

and

µ̂jm =

R
∑

r=1

Tr
∑

t=1

γr
t (j,m) Ot

R
∑

r=1

Tr
∑

t=1

γr
t (j,m),

... et cetera.

4.4.3 MATLAB toolbox for HMM

We will demonstrate the HMM toolbox by example.

An HMM example

We now describe a simple problem that we will analyze using the HMM tools. Consider the HMM with the following
parameters:

A =

.8 .1 .1

.1 .8 .1

.1 .1 .8

 π =

1
0
0

The output of the HMM is a time series with a 16-sample step size (i.e. the state is allowed to change every 16 output
samples). The output is Gaussian with mean and variance depending on the state as follows:

State Mean Var
1 0 1
2 0 4
3 2 1

For each 16-sample segment, the sample mean and standard deviation are computed. This constitutes a 2-dimensional
feature vector that is the observation space of the HMM.

Creating feature data for training.

To test the tools, we need to generate HMM output data from the above-defined model. Execute the script file
hmm example.m . The program calls the function hmm maketestdata.m which generates the 2-dimensional fea-
ture data as described above. The call is

[x,istart,nsamp]=hmm_maketestdata(Pi, A,nre cord, nsteps ,N,NF EAT);

There are 10 records of length 400 segments, thus x is size 2-by-4000. The auxiliary outputs istart,nsamp are vectors
containing the starting samples and lengths of each of the ten records. This makes it possible to locate individual records
within the matrix. The script then plots the data using the command

plot(x(1,:),x(2,:),’b.’);
xlabel(’MEAN’);
ylabel(’STDV’);

and waits for keyboard input. The resulting figure is shown in Figure 4.21.

4.4. PDF ESTIMATION USING HMMS 31

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

MEAN

S
T

D
V

Figure 4.21: Scatter plot of the HMM output features. The three states can be seen individually. Compare the plot with
the table of means and standard deviations.

Initializing HMM parameters

Next, initialize a set of HMM parameters using the commands.

names={’MEAN’,’STDV’};
min_std=[.1 .1];
NSTATES=3;
NMODE=10;
parm=init_hmm(x,NSTATES,NMODE,names,mi n_std);

This first two commands define the feature names and the minimum standard deviations for Gaussian mixture estimation
(See Section 4.3). The initial HMM parameters are obtained by using init hmm.m which creates a uniform state
transition matrix A and prior probability π. The PDF of the feature vector in each state is approximated by Gaussian
mixtures. The starting point for the Gaussian mixture parameters are obtained by the function init gmix.m described
in the previous sections.

Training using the Baum-Welch algorithm

To run 10 iterations of the Baum-Welch algorithm, use the commands:

NIT=100;
[q, parm] = hmm_reest(parm, x, istart, nsamp, NIT);

The algorithm prints the total log likelihood at each iteration. At the end, it prints the final state transition matrix and
initial probabilities. These should be close to the correct ones.

Viewing the state PDF’s

To view the HMM PDF’s, execute the command

hmm_view(parm,x,1,2);

32 CHAPTER 4. STATISTICAL MODELING

−3 −2 −1 0 1 2 3 4

0

1

2

3

4

MEAN

S
T

D
V

State 1

MEAN

S
T

D
V

−3 −2 −1 0 1 2 3 4

0

1

2

3

4

−3 −2 −1 0 1 2 3 4

0

1

2

3

4

MEAN

S
T

D
V

State 2

MEAN

S
T

D
V

−3 −2 −1 0 1 2 3 4

0

1

2

3

4

−3 −2 −1 0 1 2 3 4

0

1

2

3

4

MEAN

S
T

D
V

State 3

MEAN

S
T

D
V

−3 −2 −1 0 1 2 3 4

0

1

2

3

4

Figure 4.22: PDF plots of the three state PDF’s after convergence. Aside from some minor outlier modes, the PDF
estimates correctly approximate the true PDF’s. It is easy to see which PDF corresponds to which state of the simulated
HMM.

This produces the three state PDF plots as shown in Figure 4.22. The last two arguments are the indexes of the two dimen-
sions to be viewed. Since there are only two dimensions, the only choice is 1,2 (See a description of gmix view2.m
in Section 4.3). Look at the figure and try to figure out which PDF corresponds to state 1, 2, and 3. If a bad starting point
was used, it may not have worked.

Annealing

No matter how many iterations one makes, the bad solution will never converge to the correct. But there is a method
that is usually successful in nudging a solution away from a bad stationary point. This we call annealing and is done
by expanding the covariance matrices of the PDF estimates and by pushing the state transition matrix and prior state
probabilities closer to “uniform”. The utility ann hmm does this. Attempt to find a “bad” stationary point by re-running
the above sequence until one is found. Next, use the commands

parm=ann_hmm(parm,2,1.2);
[log_pdf_val, parm] = hmm_reest(parm, x, istart, nsamp, NIT);
hmm_view(parm,x,1,2);

This should correct the problem. Try it to satisfy yourself that it works. The second argument is the expansion factor for
Cholesky factors of the covariance matrices and the third is a parameters greater than 1.0 that determines how much the
state transition matrix is annealed.

Creating Synthetic Observations

Creating sequences of observations corresponding to an HMM parameter set is simple. The command

[x2,states]=hmm_synth_mex(parm,100);
x2=x2’;

creates a record of 100 observations from the HMM defined by parameter set parm . The output vector is of “nsamp”
rows and number of columns corresponding to the feature dimension. It has to be transposed to agree with the normal
convention. The states are passed to the output as variable “states”.

Estimating the states: the Viterbi algorithm.

The Viterbi algorithm [41] estimates the most likely state sequence. The command:

states=viterbi(parm,x);

4.4. PDF ESTIMATION USING HMMS 33

Outputs the most likely state sequence corresponding to data x . As a test, try the following commands:

[x2,states]=hmm_synth_mex(parm,100);
x2=x2’;
est_states=viterbi(parm,x2);

Compare the estimated states with the actual.

Classifying using the trained HMM parameters

The log-likelihood output of the train hmm program can be used as a classifier. If the number of iterations is specified
as zero, a shortened version of the program is run, only running the forward procedure.

[q, parm] = hmm_reest(parm, x, istart, nsamp, 0);

Since the program finds the total log likelihood for each record passed to it, the total likelihood will be the sum of the
elements of q .

34 CHAPTER 4. STATISTICAL MODELING

Bibliography

[1] Duda and Hart, Pattern Classification and Scene Analysis. Wiley, 1973.

[2] A. Webb, Statistical Pattern Recognition. London: Arnold, 1999.

[3] J. Schurmann, Statistical Pattern Recognition. New York: Wiley, 1996.

[4] R. E. Bellman, Adaptive Control Processes. Priceton, New Jersey, USA: Princeton Univ. Press, 1961.

[5] C. J. Stone, “Optimal rates of convergence for nonparametric estimators,” Annals of Statistics, vol. 8, no. 6, pp. 1348–
1360, 1980.

[6] D. W. Scott, Multivariate Density Estimation. Wiley, 1992.

[7] S. Aeberhard, D. Coomans, and O. de Vel, “Comparative analysis of statistical pattern recognition methods in high
dimensional settings,” Pattern Recognition, vol. 27, no. 8, pp. 1065–1077, 1994.

[8] S. J. Raudys and A. K. Jain, “Small sample size effects in statistical pattern recognition: Recommendations for
practitioners,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 13, no. 3, pp. 252–264, 1991.

[9] N. Intrator, Feature Extraction Using an Exploratory Projection Pursuit Neural Network. PhD thesis, Brown Uni-
versity, 1991.

[10] P. J. Huber, “Projection pursuit,” Annals of Statistics, vol. 13, no. 2, pp. 435–475, 1985.

[11] P. M. Baggenstoss, “Structural learning for classification of high dimensional data,” in Proceedings of the 1997
International Conference on Intelligent Systems and Semiotics, pp. 124–129, National Institute of Standards and
Technology, 1997.

[12] A. Finch, “A neural network for dimension reduction and application to image segmentation,” in Proceedings of the
1994 International Conference on Artificial Neural Networks (ICANN-94), pp. 252–264, 1994.

[13] H. Watanabe, Knowing and Guessing. New York: John Wiley, 1969.

[14] T. Kohonen, G. Németh, K.-J. Bry, M. Jalanko, and H. Riittinen, “Spectral classification of phonemes by learning
subspaces,” in Proc. ICASSP 79, pp. 97–100, 1979.

[15] E. Oja, Subspace Methods of Pattern Recognition. Research Studies Press, 1983.

[16] B. Schoelkopf, C. Burges, and V. N. Vapnik, “Extracting support data for a given task,” in Proc. 1st Int. Conf.
Knowledge Discovery Data Mining (U.M.Fayyad and R. Uthurusamy, eds.), (Menlo Park, CA), AAAI Press, 1995.

[17] K. Mueller, S. Mika, G. Raetsch, K. Tsuda, and B. Schoelkopf, “An introduction to kernel-based learning algo-
rithms,” IEEE Trans. Neural Networks, vol. 12, no. 2, pp. 181–201, 2001.

[18] Frimpong-Ansah, K. Pearce, D. Holmes, and W. Dixon, “A stochastic/feature based recogniser and its training
algorithm,” ICASSP-89, vol. 1, pp. 401–404, 1989.

[19] S. Kumar, J. Ghosh, and M. Crawford, “A versatile framework for labeling imagery with large number of classes,” in
Proceedings of the International Joint Conference on Neural Networks, (Washington, D.C.), pp. 2829–2833, 1999.

35

36 BIBLIOGRAPHY

[20] S. Kumar, J. Ghosh, and M. Crawford, “A hierarchical multiclassifier system for hyperspectral data analysis,” in
Multiple Classifier Systems (J. Kittler and F. Roli, eds.), pp. 270–279, Springer, 2000.

[21] H. Watanabe, T. Yamaguchi, and S. Katagiri, “Discriminative metric design for robust pattern recognition,” IEEE
Trans. Signal Processing, vol. 45, no. 11, pp. 2655–2661, 1997.

[22] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition using class specific linear
projection,” PAMI, vol. 19, pp. 711–720, July 1997.

[23] D. Sebald, “Support vector machines and the multiple hypothesis test problem,” IEEE Trans. Signal Processing,
vol. 49, pp. 2865–2872, November 2001.

[24] I.-S. Oh, J.-S. Lee, and C. Y. Suen, “A class-modularity for character recognition,” in Proceedings of International
Conference on Document Analysis and Recognition (ICDAR) 2001, (Seattle, Washington), pp. 64–68, September
2001.

[25] E. Sali and S. Ullman, “Combining class-specific fragments for object classification,” in Proceedings of 1999 British
Machine Vision Conference (BMVC99), (University of Nottingham), pp. 203–213, September 1999.

[26] D. A. Landgrebe, S. B. Serpico, M. M. Crawford, and V. Singhroy, “Introduction to the special issue on analysis of
hyperspectral image data,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 39, pp. 1343 – 1345, July
2001.

[27] S. M. Kay, A. H. Nuttall, and P. M. Baggenstoss, “Multidimensional probability density function approximation for
detection, classification and model order selection,” IEEE Trans. Signal Processing, pp. 2240–2252, Oct 2001.

[28] H. W. Sorensen, Parameter Estimation, Principles ans Problems. New York: Marcel Dekker, 1980.

[29] D. R. Cox and D. V. Hinkley, Theoretical Statistics. London: Chapman and Hall, 1974.

[30] R. L. Strawderman, “Higher-order asymptotic approximation: Laplace, saddlepoint, and related methods,” Journal
of the American Statistical Association, vol. 95, pp. 1358–1364, December 2000.

[31] J. Durbin, “Approximations for densities of sufficient estimators,” Biometrika, vol. 67, no. 2, pp. 311–333, 1980.

[32] H. L. Royden, Real Analysis. Englewood Cliffs, New Jersey, USA: Prentice Hall, third ed., 1988.

[33] T. Minka, “Exemplar-based likelihoods using the pdf projection theorem.,” Microsoft Research Ltd, technical report,
March 2004.

[34] C. Bell, H. Fujisaki, J. Heinz, K. Stevens, and A. House, “Reduction of speech spectra by analysis-by-synthesis
techniques,” Journal of the Acoustical Society of America, pp. 1725–1736, December 1961.

[35] E. Parzen, “On estimation of a probability density function and mode,” Annals of Mathematical Statistics, vol. 33,
pp. 1065–1076, 1962.

[36] D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis Of Finite Mixture Distributions. John
Wiley & Sons, 1985.

[37] R. A. Redner and H. F. Walker, “Mixture densities maximum likelihood, and the EM algorithm,” SIAM Review,
vol. 26, April 1984.

[38] N. Vlassis and A. Likas, “The kurtosis-EM algorithm for Gaussian mixture modelling,” IEEE Trans. SMC (submit-
ted), 1999.

[39] Anderson and Moore, Optimal Filtering. PH, 1979.

[40] M. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 2. London: Charles Griffin, 1979.

[41] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings
of the IEEE, vol. 77, pp. 257–286, February 1989.

BIBLIOGRAPHY 37

[42] B. H. Juang, “Maximum likelihood estimation for mixture multivariate stochastic observations of Markov chains,”
AT&T Technical Journal, vol. 64, no. 6, pp. 1235–1249, 1985.

[43] A. Oppenheim and R. Schafer, “Homomorphic analysis of speech,” IEEE Trans. Audio Electroacoustics, vol. AU-16,
pp. 221–226, 1968.

[44] J. W. Picone, “Signal modeling techniques in speech recognition,” Proceedings of the IEEE, vol. 81, no. 9, pp. 1215–
1247, 1993.

[45] S. Kay, Modern Spectral Estimation: Theory and Applications. Prentice Hall, 1988.

[46] U. Viswanathan and J. Makhoul, “Quantization properties of transmission parameters in linear predictive systems,”
IEEE Trans. ASSP, vol. 23, pp. 309–321, 1975.

[47] O. E. Barndorff-Nielsen and D. R. Cox, Asymptotic Techniques for Use in Statistics. Chapman and Hall, 1989.

[48] A. H. Nuttall, “Saddlepoint approximation and first-order correction term to the joint probability density function
of M quadratic and linear forms in K Gaussian random variables with arbitrary means and covariances,” NUWC
Technical Report 11262, December 2000.

[49] A. H. Nuttall, “Joint probability density function of selected order statistics and the sum of the remaining random
variables,” NUWC Technical Report 11345, October 2001.

[50] A. H. Nuttall, “Joint probability density function of selected order statistics and the sum of the remainder as applied
to arbitrary independent random variables,” NUWC Technical Report 11469, November 2003.

[51] A. H. Nuttall, “Saddlepoint approximation for the combined probability and joint probability density function of
selected order statistics and the sum of the remainder,” NUWC Technical Report 11XXX, February 2004.

[52] L. I. Perlovsky, “Efficient neural network for transient signal classification,” 1990 Asilmar Conference on Signals,
Systems and Computing, 1990.

[53] T. E. Luginbuhl, Estimation of General Discrete-Time Frequency Modulated Processes. PhD thesis, University of
Connecticut, 1999.

[54] A. H. Nuttall, “Detection performance of generalized likelihood ratio processors for random signals of unknown
location, structure, extent, and strength,” NUWC Technical Report 10739, August 1994.

